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Abstract—For industrial warehouses to be fully automated,
robots must be able to pick previously unseen objects from
densely packed shelves. Dense packing makes objects more
difficult to distinguish visually and requires manipulation to be
sensitive to the arrangement of objects in the shelf itself. Hence,
key challenges that arise are the visual segmentation and tracking
of previously unseen objects in cluttered environments, as well as
manipulation planning and control to pick densely packed objects
from the shelf. We present a complete system that is able to pick
unseen objects from a cluttered shelf. Our system consists of
components to track shelf inventory, re-identify requested objects
and to autonomously pick them. In our experiments, the system
is able to pick objects in highly cluttered scenes with a success
rate of 66% and 53.8 successful picks per hour. We provide a
classification of the pick attempts and their frequency to motivate
future research.

I. INTRODUCTION

The human ability to pick objects from densely packed
shelves is unparalleled, unmatched by today’s industrial pick-
and-place setups. Consider, for instance, a bookshelf with
meticulously arranged books, or an industrial storage room
housing a wide variety of objects on large shelves. The goal
in these environments is to maximize space utilization and
minimize the time required to find and retrieve objects.
As depicted in Fig. 1, an industrial robotic arm manipulator
faces the task of picking several objects from an industrial
shelf. This task presents multiple robotic challenges, such
as visual perception of previously unseen objects or robust
object handling. Perception and robotic manipulation in such
cluttered environments are difficult due to occlusion and lack
of a priori information about the objects, where often only a
label or book title is known. For industrial applications, the
robotic system must also handle a diverse range of objects
quickly and robustly.

To address these challenges, we propose a system capable
of picking objects in cluttered and constrained shelf environ-
ments. Our method is evaluated through real-world experi-
ments using industrial shelves and a variety of objects. We
also introduce categories for failure classification to identify
promising future research directions and challenges.

The rest of this paper is structured as follows: Sec. II
provides a literature review. Sec. III describes our method and
system architecture. Sec. IV presents our evaluation results,
and Sec. V concludes our work.

Fig. 1. A UR16e robotic arm manipulator picking a requested object from
a densely packed shelf. Before the pick, a virtual inventory model was built
as objects were stowed in the bins. Objects can be rearranged while stowing
and thus need to be re-identified before manipulation.

II. RELATED WORK

Robustly grasping and manipulating objects is an active
research area [11] and includes aspects such picking objects
from cluttered table-top scenarios [8] or 6-DoF grasping in
clutter [10]. Benchmarks and competitions have played a
significant role in evaluating grasping and manipulation [15].
Benchmarking is time-consuming, however, and the sim-to-
real gap limits the utility of simulated alternatives. Frameworks
have been developed to understand the sim-to-real gap or
to make experiments more reproducible [12]. However, these
are limited to table-top scenarios. For industrial applications
perhaps the most visible research competition is the Amazon
Picking Challenge. Here object detection is a key element [17].
The ACRV benchmark [6] introduces reproducible guidelines
for object arrangement using a widely available shelf. How-
ever, the object set is limited to 42 object and the focus is not
on cluttered scenarios. Other works deal with manipulation



Fig. 2. The system architecture and workflow for picking objects from
densely packed shelves.

planning and control for logistics scenarios like restocking a
grocery store shelf [4]. Recently, [9] introduced ARMBench,
a large-scale, object-centric benchmark dataset for robotic
manipulation in warehouses. The major focus of ARMBench
is on object segmentation and identification in clutter as well
as on defect detection. In contrast to previous work, our focus
is on highly cluttered and densely packed industrial shelf
environments.

III. SYSTEM ARCHITECTURE

Our software architecture consists of perception and control
components sequenced by a state machine. Fig. 2 delineates its
structure. The state machine follows the canonical workflow
of picking items from a shelf. Our system also includes a
database and a web interface, which are used to curate the
inventory of the bins and to enable a human to send pick
requests to the state machine.

A. Object database and web interface

The database contains the stowing history of the shelves
as well as information for all available objects. This includes,
for example, object names, physical properties, and a unique
product identification number.

The web interface coordinates the process by which a
human “stower” loads the shelf. When a human scans both an
object barcode and a barcode of a bin, it creates appropriate
database entries to keep track of the bin in which an object has
been placed. The interface calculates and displays metrics such
as the bin utilization, which indicates “how full the bins are”
to help the stower achieve desired levels of density. Finally,
the web interface is also used to request objects to be picked
from the bins. Once an operator has selected the objects a
request is generated that triggers the state-machine.

Every time an object has been stowed an RGB-D image
of the bin is captured and used to extract object feature
embeddings for later re-identification.

B. State machine

The state machine processes the list of requested objects
and manages the pick process for each of them. The object
is re-identified in the bin, a pick pose is extracted and the
manipulator is moved accordingly. If the object is picked

successfully the manipulator drops the object at a location
where it can be processed further.

The state machine also contains a retry mechanism that
allows a human operator to ask the robot to execute a picking
action on the same object again after the previous pick attempt
has failed.

C. Visual perception

The central challenge for the visual perception system is
accurately segmenting previously unseen objects in the bin and
consistently identifying the same object across multiple im-
ages. In large-scale industrial warehouse settings, the ability to
handle unseen objects is crucial, as new objects are frequently
introduced. However, the definition of what constitutes an

object can be ambiguous and varies across different environ-
ments. For instance, a pack of shampoo should be regarded as
a single entity rather than multiple identical objects. Another
critical factor is the ability to re-identify objects. Many objects
in these environments are textureless, which limits the use of
keypoint-based methods for identification [7, 13]. The wide
variety of object categories also constrains the use of template-
based methods for identification [16]. Moreover, the presence
of discrete frames in the sequence hampers the effectiveness
of methods assuming continuous frames [2, 5]. To tackle these
challenges, we employ a method that jointly performs instance
segmentation and re-identification of unseen objects.

The term “re-identification” is akin to tracking, but instead
of operating on a continuous video stream, it involves tracking
the same object across frames that are not continuous in time.
Our method is based on the works of [5] and [1], which
pioneered innovative techniques for object segmentation and
tracking in complex environments.

The primary innovation of our perception system is its
ability to simultaneously generate queries for each frame
independently while allowing communication between frames
efficiently. The property that the queries are generated for
each frame independently is crucial for maintaining seg-
mentation accuracy over non-sequential frames. Concurrently,
our method allows efficient communication between queries
originating from different frames. This dual capability facili-
tates both intra-frame and inter-frame communication, thereby
enhancing the accuracy of instance segmentation and re-
identification.

During the stowing process, objects are re-identified using
extracted object embeddings queries. These embeddings are
essentially unique identifiers for objects, generated based on
their visual features. Our network, trained solely on synthetic
data, is capable of segmenting and re-identifying objects in
real-world image sequences, even in challenging conditions
with heavy clustering and large object movements. The result
of this process is a segmentation mask for the requested object,
as demonstrated in Fig. 3, showing the segmentation results
of a bin.

D. Manipulation planning and execution

After the requested object has been identified successfully,
the next step is to extract possible pick points or grasp



Fig. 3. Segmentation masks and matching results. An inventory model is
built by tracking object embeddings over time-discrete frames. From left to
right: Five segmentation masks and tracking results of a single bin after a
new objects are stowed.

Fig. 4. A subset of the object set used throughout evaluation. The set consists
of objects of different shapes, sizes and weights, as well as deformable objects
and objects wrapped in plastic bags.

hypotheses. A heuristic computes the pick pose close to the
center of the segmentation and tests the reachability with
inverse kinematics. A pre-grasp pose is also computed and
the end-effector is controlled accordingly. For control and
planning of our system we use the widely available MoveIt
library [3]. We use the libraries OMPL [14] for planning and
TRAC-IK to find inverse kinematic solutions and MoveIt’s
Cartesian planner plans the path from the pre-grasp pose to the
grasp pose. When the grasp pose is reached, the end-effector
vacuum is activated and the system executes a pushing motion
towards the back of the bin. The pushing motion ensures that
the vacuum is sealed and the object is picked securely.

E. Success and Failure Detection

During grasp execution the system uses the robot’s force
torque sensor and a vacuum level sensor in the suction cup
to determine if an object has been picked. The force output
controls the execution of the Cartesian planner. Above a
certain threshold the plan is deemed executed and the state
machine then transitions to the next state. Finally, the state
machine moves the end-effector with the picked object to a
predefined placement location and releases the object. Failure
is determined by the detected pressure on the suction cup.
The object is not securely attached to the suction cup if the
detected pressure value falls below a threshold value.

IV. EVALUATION

A. Workcell setup

Our workcell, shown in Fig. 1, uses a cantilever-mounted
Universal Robots UR16e, configured with a Robotiq EPick

Trial 1 Trial 2 Trial 3 Trial 4

Average bin utilization 40 % 40% 41% 41%
# unique requests 16 17 18 17
# pick attempts 22 21 26 23
# of successfully picked items 7 14 9 15
# of fail items 15 7 17 8
# of retries 6 4 6 3
Pick success % 43% 82% 50% 88%
Time (min:sec) 15:12 12:34 13:08 11:19
UPH (units per hour) 27.6 66.8 41.1 79.5

TABLE I
EVALUATION RESULTS

suction gripper, which has been extended to increase the
reachability (c.f. Fig. 1). A frame mounted Azure Kinect
RGB-D sensor points towards a warehouse shelving unit. The
shelf has several bins each of which can be densely packed
with objects.

The shelving unit consists of four sides with differently
sized bins, however for the evaluation we use one side of
the unit and a subset of 16 bins due to the robot’s limited
workspace. While adding a gantry or rotating the shelves
would alleviate these limitations, this was not necessary for
the purposes of our research. The bins are stowed with a
huge variety of different objects, which differ in size and
shape. Fig. 4 shows a small subset of the objects. Overall, the
databases curates more than 1050 objects of various shapes
and size and is continuously growing.

B. Experiments

We conducted four trials, each with different kinds of
objects. To quantify our approach we report on (a) Pick
Success Rate, (b) Units Per Hour (UPH) as outlined in [11].
Moreover, we also report the bin utilization as the density
within the bin is an important indicator for the difficulty of
grasping objects. The bin utilization u defined for a bin is
defined as

u(bin) =
1

Vbin

X

o2bin

VOBB(o) , (1)

where Vbin denotes the volume of the bin, and VOBB(o)
volume of the object oriented bounding box of object o. The
bin utilization in Eq. 1 can then be averaged for all bins of
the shelf.

For the evaluation 173 objects of different shapes and sizes
were stowed across the trials (or an average of 43 objects per
trial). Fig. 5 shows the state of the bins after stowing. The
bins were loaded with a bin utilization of more than 40%.
The number of objects picked from each bin was limited to
maintain the challenge of clutter throughout the trial; removing
an object lowers the bin utilization and each subsequent pick
in the bin easier. In the first and third trial, objects show a
greater displacement while stowing the shelf, i.e. objects were
moved within a bin.



Fig. 5. Overview of the objects that were stowed during the trial runs 1-4 from left to right. Trial 1 and 3 include higher displacements during the stowing.

Fig. 6. Classification of the failure types during the trial runs.

C. Results

Tab. I lists the evaluation results. Out of the trials, 68 objects
were requested. In total the system made 92 pick attempts
in 52 minutes and 13 seconds. 45 were successful, resulting
in an overall success rate of 66% and a rate of successful
picks of 53.8 mean picks per hour. Performance variation of
our system partially comes from different stowing approaches
as well as object configurations. This includes, for example,
objects being stacked on top of each other. Other sources of
variation include stochastic processes in the system like the
motion planner.

1) Pick and failure classification: Failures observed when
using the system can be roughly categorized as resulting
from grasp planning, manipulation, perception, reflecting the
different stages of the state machine. Tab. II lists categories
that are used for classification of successful / unsuccessful
pick attempts. Fig. 6 shows the frequency of the pick
classifications. In some rare cases, multiple categories are
used. For example if an object is picked successfully (ZSUC),
but during picking it dropped another object (MEC).

Error code Description

Grasp Planning
GP general error
Manipulation
MAICO mis-pick - actuator incapable

of capturing object
MDF mis-pick - dynamic failure
MDO mis-pick - deformable object
UNRE unreachable object
MSF mis-pick - suction failure
MEC extraction collision
Perception
PIOI incorrect object identification
PIOL incorrect object location/pose
POFO object fully occluded
PSE segmentation error
Other
HERR human error
UNK unknown
XPASS object is skipped
Success
YSUCH success w/ human help
ZSUC success

TABLE II
CLASSIFICATION OF PICK ATTEMPT OUTCOMES

V. DISCUSSION AND FUTURE DIRECTIONS

We present a system that picks previously unseen objects out
of densely packed shelf environments. We evaluate our system
in real-world application with heavy clutter and a constrained
environment. Our method is able to pick previously unseen
objects with a pick rate of 53.8 units per hour. Our pick attempt
classification shows that most of the unsuccessful picks are
due to the design of the gripper or the manipulation strategy.
To address the limitations of our commercial vacuum gripper,
we are investigating innovative gripper designs that include
Time of Flight sensors, which will provide live system state
for online manipulation, and an array of movable suction cups
with higher vacuum flow rates to assist with object grasping.
Additionally, we are exploring approaches that involve hu-
mans in the loop including human assisted failure correction
and learned manipulation strategies from human teleoperated
demonstrations.
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